first commit

This commit is contained in:
nasir@endelospay.com
2025-08-12 02:54:17 +05:00
commit d97cad1736
225 changed files with 137626 additions and 0 deletions

22
packages/wasm-simd/.gitignore vendored Normal file
View File

@@ -0,0 +1,22 @@
# WASM build outputs
/pkg/
/target/
# Rust
Cargo.lock
# Node.js
node_modules/
npm-debug.log*
yarn-debug.log*
yarn-error.log*
# IDE
.vscode/
.idea/
*.swp
*.swo
# OS
.DS_Store
Thumbs.db

View File

@@ -0,0 +1,70 @@
# WASM SIMD 构建指南
## 🚀 快速构建
### 前置要求
```bash
# 安装 Rust
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# 安装 wasm-pack
curl https://rustwasm.github.io/wasm-pack/installer/init.sh -sSf | sh
```
### 构建选项
1. **从项目根目录构建**(推荐):
```bash
# 构建 WASM 并自动复制到 Chrome 扩展
npm run build:wasm
```
2. **只构建 WASM 包**
```bash
# 从 packages/wasm-simd 目录
npm run build
# 或者从任何地方使用 pnpm filter
pnpm --filter @chrome-mcp/wasm-simd build
```
3. **开发模式构建**
```bash
npm run build:dev # 未优化版本,构建更快
```
### 构建产物
构建完成后,在 `pkg/` 目录下会生成:
- `simd_math.js` - JavaScript 绑定
- `simd_math_bg.wasm` - WebAssembly 二进制文件
- `simd_math.d.ts` - TypeScript 类型定义
- `package.json` - NPM 包信息
### 集成到 Chrome 扩展
WASM 文件会自动复制到 `app/chrome-extension/workers/` 目录Chrome 扩展可以直接使用:
```typescript
// 在 Chrome 扩展中使用
const wasmUrl = chrome.runtime.getURL('workers/simd_math.js');
const wasmModule = await import(wasmUrl);
```
## 🔧 开发工作流
1. 修改 `src/lib.rs` 中的 Rust 代码
2. 运行 `npm run build` 重新构建
3. Chrome 扩展会自动使用新的 WASM 文件
## 📊 性能测试
```bash
# 在 Chrome 扩展中运行基准测试
import { runSIMDBenchmark } from './utils/simd-benchmark';
await runSIMDBenchmark();
```

View File

@@ -0,0 +1,24 @@
[package]
name = "simd-math"
version = "0.1.0"
edition = "2021"
[lib]
crate-type = ["cdylib"]
[dependencies]
wasm-bindgen = "0.2"
wide = "0.7"
console_error_panic_hook = "0.1"
[dependencies.web-sys]
version = "0.3"
features = [
"console",
]
[profile.release]
opt-level = 3
lto = true
codegen-units = 1
panic = "abort"

View File

@@ -0,0 +1,61 @@
# @chrome-mcp/wasm-simd
SIMD-optimized WebAssembly math functions for high-performance vector operations.
## Features
- 🚀 **SIMD Acceleration**: Uses WebAssembly SIMD instructions for 4-8x performance boost
- 🧮 **Vector Operations**: Optimized cosine similarity, batch processing, and matrix operations
- 🔧 **Memory Efficient**: Smart memory pooling and aligned buffer management
- 🌐 **Browser Compatible**: Works in all modern browsers with WebAssembly SIMD support
## Performance
| Operation | JavaScript | SIMD WASM | Speedup |
| ------------------------------ | ---------- | --------- | ------- |
| Cosine Similarity (768d) | 100ms | 18ms | 5.6x |
| Batch Similarity (100x768d) | 850ms | 95ms | 8.9x |
| Similarity Matrix (50x50x384d) | 2.1s | 180ms | 11.7x |
## Usage
```rust
// The Rust implementation provides SIMD-optimized functions
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
pub struct SIMDMath;
#[wasm_bindgen]
impl SIMDMath {
#[wasm_bindgen(constructor)]
pub fn new() -> SIMDMath { SIMDMath }
#[wasm_bindgen]
pub fn cosine_similarity(&self, vec_a: &[f32], vec_b: &[f32]) -> f32 {
// SIMD-optimized implementation
}
}
```
## Building
```bash
# Install dependencies
cargo install wasm-pack
# Build for release
npm run build
# Build for development
npm run build:dev
```
## Browser Support
- Chrome 91+
- Firefox 89+
- Safari 16.4+
- Edge 91+
Older browsers automatically fall back to JavaScript implementations.

View File

@@ -0,0 +1,34 @@
{
"name": "@chrome-mcp/wasm-simd",
"version": "0.1.0",
"description": "SIMD-optimized WebAssembly math functions for Chrome MCP",
"main": "pkg/simd_math.js",
"types": "pkg/simd_math.d.ts",
"files": [
"pkg/"
],
"scripts": {
"build": "wasm-pack build --target web --out-dir pkg --release",
"build:dev": "wasm-pack build --target web --out-dir pkg --dev",
"clean": "rimraf pkg/",
"test": "wasm-pack test --headless --firefox"
},
"keywords": [
"wasm",
"simd",
"webassembly",
"math",
"cosine-similarity",
"vector-operations"
],
"author": "hangye",
"license": "MIT",
"devDependencies": {
"rimraf": "^5.0.0"
},
"repository": {
"type": "git",
"url": "git+https://github.com/your-repo/chrome-mcp-server.git",
"directory": "packages/wasm-simd"
}
}

View File

@@ -0,0 +1,245 @@
use wasm_bindgen::prelude::*;
use wide::f32x4;
// 设置 panic hook 以便在浏览器中调试
#[wasm_bindgen(start)]
pub fn main() {
console_error_panic_hook::set_once();
}
#[wasm_bindgen]
pub struct SIMDMath;
#[wasm_bindgen]
impl SIMDMath {
#[wasm_bindgen(constructor)]
pub fn new() -> SIMDMath {
SIMDMath
}
// 辅助函数:仅计算点积 (SIMD)
#[inline]
fn dot_product_simd_only(&self, vec_a: &[f32], vec_b: &[f32]) -> f32 {
let len = vec_a.len();
let simd_lanes = 4;
let simd_len = len - (len % simd_lanes);
let mut dot_sum_simd = f32x4::ZERO;
for i in (0..simd_len).step_by(simd_lanes) {
// 使用 try_from 和 new 方法,这是 wide 库的正确 API
let a_array: [f32; 4] = vec_a[i..i + simd_lanes].try_into().unwrap();
let b_array: [f32; 4] = vec_b[i..i + simd_lanes].try_into().unwrap();
let a_chunk = f32x4::new(a_array);
let b_chunk = f32x4::new(b_array);
dot_sum_simd = a_chunk.mul_add(b_chunk, dot_sum_simd);
}
let mut dot_product = dot_sum_simd.reduce_add();
for i in simd_len..len {
dot_product += vec_a[i] * vec_b[i];
}
dot_product
}
#[wasm_bindgen]
pub fn cosine_similarity(&self, vec_a: &[f32], vec_b: &[f32]) -> f32 {
if vec_a.len() != vec_b.len() || vec_a.is_empty() {
return 0.0;
}
let len = vec_a.len();
let simd_lanes = 4;
let simd_len = len - (len % simd_lanes);
let mut dot_sum_simd = f32x4::ZERO;
let mut norm_a_sum_simd = f32x4::ZERO;
let mut norm_b_sum_simd = f32x4::ZERO;
// SIMD 处理
for i in (0..simd_len).step_by(simd_lanes) {
let a_array: [f32; 4] = vec_a[i..i + simd_lanes].try_into().unwrap();
let b_array: [f32; 4] = vec_b[i..i + simd_lanes].try_into().unwrap();
let a_chunk = f32x4::new(a_array);
let b_chunk = f32x4::new(b_array);
// 使用 Fused Multiply-Add (FMA)
dot_sum_simd = a_chunk.mul_add(b_chunk, dot_sum_simd);
norm_a_sum_simd = a_chunk.mul_add(a_chunk, norm_a_sum_simd);
norm_b_sum_simd = b_chunk.mul_add(b_chunk, norm_b_sum_simd);
}
// 水平求和
let mut dot_product = dot_sum_simd.reduce_add();
let mut norm_a_sq = norm_a_sum_simd.reduce_add();
let mut norm_b_sq = norm_b_sum_simd.reduce_add();
// 处理剩余元素
for i in simd_len..len {
dot_product += vec_a[i] * vec_b[i];
norm_a_sq += vec_a[i] * vec_a[i];
norm_b_sq += vec_b[i] * vec_b[i];
}
// 优化的数值稳定性处理
let norm_a = norm_a_sq.sqrt();
let norm_b = norm_b_sq.sqrt();
if norm_a == 0.0 || norm_b == 0.0 {
return 0.0;
}
let magnitude = norm_a * norm_b;
// 限制结果在 [-1.0, 1.0] 范围内,处理浮点精度误差
(dot_product / magnitude).max(-1.0).min(1.0)
}
#[wasm_bindgen]
pub fn batch_similarity(&self, vectors: &[f32], query: &[f32], vector_dim: usize) -> Vec<f32> {
if vector_dim == 0 { return Vec::new(); }
if vectors.len() % vector_dim != 0 { return Vec::new(); }
if query.len() != vector_dim { return Vec::new(); }
let num_vectors = vectors.len() / vector_dim;
let mut results = Vec::with_capacity(num_vectors);
// 预计算查询向量的范数
let query_norm_sq = self.compute_norm_squared_simd(query);
if query_norm_sq == 0.0 {
return vec![0.0; num_vectors];
}
let query_norm = query_norm_sq.sqrt();
for i in 0..num_vectors {
let start = i * vector_dim;
let vector_slice = &vectors[start..start + vector_dim];
// dot_product_and_norm_simd 计算 vector_slice (vec_a) 的范数
let (dot_product, vector_norm_sq) = self.dot_product_and_norm_simd(vector_slice, query);
if vector_norm_sq == 0.0 {
results.push(0.0);
} else {
let vector_norm = vector_norm_sq.sqrt();
let similarity = dot_product / (vector_norm * query_norm);
results.push(similarity.max(-1.0).min(1.0));
}
}
results
}
// 辅助函数SIMD 计算范数平方
#[inline]
fn compute_norm_squared_simd(&self, vec: &[f32]) -> f32 {
let len = vec.len();
let simd_lanes = 4;
let simd_len = len - (len % simd_lanes);
let mut norm_sum_simd = f32x4::ZERO;
for i in (0..simd_len).step_by(simd_lanes) {
let array: [f32; 4] = vec[i..i + simd_lanes].try_into().unwrap();
let chunk = f32x4::new(array);
norm_sum_simd = chunk.mul_add(chunk, norm_sum_simd);
}
let mut norm_sq = norm_sum_simd.reduce_add();
for i in simd_len..len {
norm_sq += vec[i] * vec[i];
}
norm_sq
}
// 辅助函数同时计算点积和vec_a的范数平方
#[inline]
fn dot_product_and_norm_simd(&self, vec_a: &[f32], vec_b: &[f32]) -> (f32, f32) {
let len = vec_a.len(); // 假设 vec_a.len() == vec_b.len()
let simd_lanes = 4;
let simd_len = len - (len % simd_lanes);
let mut dot_sum_simd = f32x4::ZERO;
let mut norm_a_sum_simd = f32x4::ZERO;
for i in (0..simd_len).step_by(simd_lanes) {
let a_array: [f32; 4] = vec_a[i..i + simd_lanes].try_into().unwrap();
let b_array: [f32; 4] = vec_b[i..i + simd_lanes].try_into().unwrap();
let a_chunk = f32x4::new(a_array);
let b_chunk = f32x4::new(b_array);
dot_sum_simd = a_chunk.mul_add(b_chunk, dot_sum_simd);
norm_a_sum_simd = a_chunk.mul_add(a_chunk, norm_a_sum_simd);
}
let mut dot_product = dot_sum_simd.reduce_add();
let mut norm_a_sq = norm_a_sum_simd.reduce_add();
for i in simd_len..len {
dot_product += vec_a[i] * vec_b[i];
norm_a_sq += vec_a[i] * vec_a[i];
}
(dot_product, norm_a_sq)
}
// 批量矩阵相似度计算 - 优化版
#[wasm_bindgen]
pub fn similarity_matrix(&self, vectors_a: &[f32], vectors_b: &[f32], vector_dim: usize) -> Vec<f32> {
if vector_dim == 0 || vectors_a.len() % vector_dim != 0 || vectors_b.len() % vector_dim != 0 {
return Vec::new();
}
let num_a = vectors_a.len() / vector_dim;
let num_b = vectors_b.len() / vector_dim;
let mut results = Vec::with_capacity(num_a * num_b);
// 1. 预计算 vectors_a 的范数
let norms_a: Vec<f32> = (0..num_a)
.map(|i| {
let start = i * vector_dim;
let vec_a_slice = &vectors_a[start..start + vector_dim];
self.compute_norm_squared_simd(vec_a_slice).sqrt()
})
.collect();
// 2. 预计算 vectors_b 的范数
let norms_b: Vec<f32> = (0..num_b)
.map(|j| {
let start = j * vector_dim;
let vec_b_slice = &vectors_b[start..start + vector_dim];
self.compute_norm_squared_simd(vec_b_slice).sqrt()
})
.collect();
for i in 0..num_a {
let start_a = i * vector_dim;
let vec_a = &vectors_a[start_a..start_a + vector_dim];
let norm_a = norms_a[i];
if norm_a == 0.0 {
// 如果 norm_a 为 0所有相似度都为 0
for _ in 0..num_b {
results.push(0.0);
}
continue;
}
for j in 0..num_b {
let start_b = j * vector_dim;
let vec_b = &vectors_b[start_b..start_b + vector_dim];
let norm_b = norms_b[j];
if norm_b == 0.0 {
results.push(0.0);
continue;
}
// 使用专用的点积函数
let dot_product = self.dot_product_simd_only(vec_a, vec_b);
let magnitude = norm_a * norm_b;
// magnitude 不应该为零,因为已经检查了 norm_a/norm_b
let similarity = (dot_product / magnitude).max(-1.0).min(1.0);
results.push(similarity);
}
}
results
}
}